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1 Introduction

Logics for epistemic knowledge have broad applications and are useful in modeling the knowledge states of

individuals, such as in the classic muddy children problem. Variants such dynamic epistemic logic extend the

classic logic framework to better suit specific applications and situations. In their paper ”Reasoning about

Knowledge and Probability,” Ronald Fagin and Joseph Halpern introduce probability into the language of

epistemic logic, allowing agents to not only speak of worlds as possibly existing but as possibly existing with a

certain probability. As the authors point out, the ability to reason about knowledge in a probabilistic manner

is critical in topics such as distributed computing and fields such as economics and artificial intelligence, which

often already do but which don’t provide an explicit axiomatic system for such. In this paper, I will summary

the key portions of Fagin and Halpern’s paper, notably their added semantics and axioms which form the

basis of what they call the ”logic of knowledge and probability” [1]. Then, I will show how their new logic

allows for discussion of the Monty Hall problem, a well known problem in logic and probability.

2 A Standard Kripke Model

I will first review the language of an epistemic Kripke model, Le, which consists of the following syntax:

α | ¬ϕ | (ϕ ∧ ψ) | (ϕ ∨ ψ) | Kiϕ

Where Kiϕ denotes that agent i knows that ϕ and the rest are directly from sentential logic. An epistemic

Kripke model for Le is a model of knowledge across various agents and possible worlds. Specifically, it is

the set M = (S, π,R1, ..., Rn) where S is the set of possible worlds in the model, π is a truth assignment

evaluating a sentence at a world s ∈ S to either true or false, and Ri is a binary relation for each agent i,

i ∈ [0, n]. wRiv if world v is a possibility from world w given what agent i knows. In their paper, Fagin and

Halpern assume that Ri is an equivalence relation as they are primarily concerned with distributed systems

where such an assumption makes sense. They do note that their results can be easily modified to fit a generic

binary relation [1]. For convenience, let Ri(w) denote the set of worlds accessible from w by agent i.

With respect to the logic of epistemic Kripke models, the following set of axioms and inferences, denoted

S5, is sound and complete [1]:

K1. All instances of propositional tautologies

K2. (Kiϕ ∧Ki(ϕ⇒ ψ))⇒ Kiψ

K3. Kiϕ⇒ ϕ
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K4. Kiϕ⇒ KiKiϕ

K5. ¬Kiϕ⇒ Ki¬Kiϕ

R1. From ϕ and ϕ⇒ ψ infer ψ (modus ponens)

R2. From ϕ infer Kiϕ

3 Adding Probability

Before we can incorporate probability into the epistemic Kripke model, we must first introduce probability

theory. A probability space consists of (Ω, X, µ) where Ω is the sample space, X is a set of subsets of Ω, and

µ is a probability valuation function which assigns a probability measure to each element of X. So, for this

definition to be well behaved, all elements of X must be measurable. However, it may be that we wish to

consider subsets of Ω which contain unmeasurable elements. In order to consider all possible subsets of Ω,

Fagin and Halpern define the inner measure µ∗ such that

µ∗(A) = sup{µ(B) | B ⊆ A and B ∈ X}

The inner measure essentially assigns to the subset A of Ω the measure of the largest measurable subset of

A, thus allowing us to consider the probabilities of all subsets of Ω [1].

To add the notion of probability to the knowledge states in our model M = (S, π,R1, ..., Rn) with n agents,

Fagin and Halpern associate to each world s ∈ S its own probability space. Given an agent i at world

s, we wish to place a probability on the worlds in S from the perspective of that agent. The resulting

model they term a ”Kripke structure for knowledge and probability” and is the tuple (S, π,R1, ..., Rn, P ).

The addition P is the probability assignment mapping an agent and world to a probability space such that

P (i, s) = (Si,s, Xi,s, µi,s), denoted Pi,s, where Si,s ⊆ S is a subset of the worlds in our model. Fagin is quick

to note that Si,s need not necessarily be equivalent to Ri(s), the set of worlds epistemically open to agent i.

This allows one to consider only subsets of the possible worlds. It does need to be a subset of Ri,s however,

as otherwise it would be possible for an agent to assign a positive probability to something they know to be

false. [1].

Fagin and Halpern then go on to express more specifically how a probability is related to an arbitrary

sentence ϕ. It is assumed that we have defined (M, s) |= ϕ for s ∈ S. Let Si,s(ϕ) = {s′ ∈ Sis, | (M, s′) |= ϕ},
the set of all worlds in Si,s where ϕ is entailed. Then we can define wi(ϕ) ≥ b as being true according to

agent i at a world s if the measure of Si,s is at least b. Fagin’s and Halpern’s formal definition is:

(M, s) |= wi(ϕ) ≥ b iff µi,s(Sis,(ϕ)) ≥ b

However, it is possible for some elements of Si,s to be unmeasurable and so it is noted that one should

use (µi,s)∗ instead of µi,s to ensure that the definition is well behaved in such cases. For instance, Fagin

and Halpern work through an example where an action occurs or doesn’t occur depending on the result

of a coin flip and the result of an input bit being either 1 or 0. This example has four possible outcomes.

Although the coin has a known probability distribution, both sides being equally likely, the input bit does

not have such a known probability distribution. So, although we want to consider these states and their

probabilities, we cannot initially assign a probability to the set {{1, heads}, {1, tails}} as that would give us
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the probability of the input bit being 1 which is unknown. We can however assign a probability of 1
2 to the

set {{1, heads}, {0, heads}}, the states where the coin flip results in heads [1].

4 Axioms of the Logic

Fagin and Halpern then go on to outline the axioms of their logic of probability and knowledge. In the

introduction of Kripke Models, the axioms and inferences K1 through K2, R1, and R2 were introduced.

Axiom K1 and rule R1 cover propositional reasoning while K2-K5 and R2 cover reasoning about knowledge.

From probability theory, the following set of axioms are added to the logic [1]:

W1. wi(ϕ) ≥ 0 (nonnegativity)

W2. wi(true) = 1 (the probability of the event true is 1)

W3. wi(ϕ ∧ ψ) + wi(ϕ ∧ ¬ψ) = wi(ϕ) (additivity)

W4. wi(ϕ) = wi(ψ) if ϕ⇔ ψ is a propositional tautology (distributivity)

W5. wi(false) = 0 (the probability of the event false is 0)

Additionally, axioms are added regarding linear inequalities so that the language of this logic can discuss

the combination of sentences regarding events and probabilities [1].

I1. (a1wi(ϕ1) + ...+ akwi(ϕk) ≥ b)⇔ (a1wi(ϕ1) + ...+ akwi(ϕk) + 0wi(ϕk+1 ≥ b) (algebra of zero terms)

I2. (a1wi(ϕ1) + ... + akwi(ϕk) ≥ b) ⇒ (aj1wi(ϕj1) + ... + ajkwi(ϕjk) ≥ b) if j1, ..., jk is a permutation of

1, ..., k (permutation of terms)

I3. (a1wi(ϕ1)+...+akwi(ϕk) ≥ b)∧(a′1wi(ϕ1)+...+a′kwi(ϕk) ≥ b)⇒ (a1+a′1)wi(ϕ1)+...+(ak+a′k)wi(ϕk) ≥ b
(factorization of coefficients)

I4. (a1wi(ϕ1)+ ...+akwi(ϕk) ≥ b)⇔ (da1wi(ϕ1)+ ...+dakwi(ϕk) ≥ db) for d > 0 (multiplication of positive

coefficient)

I5. (wi(ϕ) ≥ b) ∨ (wi(ϕ) ≤ b) (dichotomy)

I6. (wi(ϕ) ≥ b)⇒ (wi(ϕ) > c) if b > c (monotonicity)

In the case that there are non-measurable elements, axiom W3 fails and is instead replaced by a new axiom

W6 which is based on the inclusion-exclusion rule but which will be omitted as it is technically complicated

and not particularly necessary. These axioms comprise a sound and complete axiomatization for the logic of

knowledge and probability [1].

Fagin and Halpern go on to consider additional conditions that may be added to capture certain properties of

the system and of the knowledge of agents. These conditions are in correspondence with additional axioms.

One such desired condition, stated previously but not formalized, is that Si,s ⊆ Ri(s) which guarantees that

a positive probability is not assigned to something which agent i knows to be false. This condition is denoted

CONS, for consistent [1].

CONS. For all i and s, if Pi,s = (Si,s, Xi,s, µi,s), then Si,s ⊆ Ri(s)

W7. Ki(ϕ)⇒ (wi(ϕ) = 1)
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Another possibly desired condition is that all of the agents agree on the probability space at any given point.

This is relevant in cases where probability distributions are common knowledge, such as a fair coin is flipped

for all to see. This condition is denoted OBJ for objective [1].

OBJ. Pi,s = Pj,s for all i, j and s

W8. (a1wi(ϕ1) + ...+ akwi(ϕk) ≥ b)⇒ (a1wj(ϕ1) + ...+ akwj(ϕk) ≥ b)

In some cases, an assumption is made that the probability space is the same in all worlds accessible to an

agent i. That is, Pi = (S,Xi, µi), where S = Ri(s) is the set of all worlds. As Fagin and Halpern point

out, this is a common assumption, especially in economics works. The probability of a specific event is

the conditional probability of that event given the set of worlds accessible to an agent i at a state s. This

condition is denoted SDP, for state-determined probability [1].

SDP. For all i, s, and t, if t ∈ Ri(s), then Pi,s = Pi,t

W10. ϕ⇒ Ki(ϕ) if ϕ is an i-probability formula for the negation of an i-probability formula

A less strict version of SDP if UNIF, for uniformity, which only requires that Ri(s) can be partitioned into

subsets such that the probability space of each world in a given subset is the same [1].

UNIF. For all i, s, and t, if Pi,s = (Si,s, Xi,s, µi,s and t ∈ Si,s, then Pi,t = Pi,s

W9. ϕ⇒ (wi(ϕ) = 1) if ϕ is an i-probability formula for the negation of an i-probability formula

The final condition described is that all formulas define measurable sets and is denoted MEAS [1].

MEAS. For all i and s and for every formula ϕ, the set Si,s(ϕ) ∈ Xi,s.

The union of our required axioms with a subset of these additional axioms is sound and complete for model

which satisfy the conditions corresponding to those additional axioms [1].

Lastly, Fagin and Halpern incorporate probability into the definition of common knowledge, which is relevant

in cases where it is not necessarily possible for true common knowledge to exist but yet there is some threshold

of certainty which is good enough, say in a scenario in the Two Generals Problem.

Let G denote the set of all agents {1, ..., n}. Then Eb
Gϕ says that “everyone knows ϕ with at least certainty

b” and Cb
Gϕ says that “it is common knowledge among everyone that ϕ with certainty at least b”. Fagin’s

and Halpern’s definitions are as follows.

(M, s) |= Eb
Gϕ iff (M, s) |= Ki(wi(ϕ) ≥ b) for all i ∈ G

For common knowledge, a new term must be introduced. (F b
G)0ϕ = true and (F b

G)k+1 = Eb
G(ϕ ∧ (F b

G)kϕ).

Thus,

(M, s) |= Cb
Gϕ iff (M, s) |= (F b

G)kϕ for all k ≥ 1

With that, Fagin and Halpern conclude their formulation of the logic for probability and knowledge [1].
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5 The Monty Hall Problem

The addition of probability theory to epistemic models allows one to discuss problems such as the Monty

Hall problem which involve probabilistic components. The Monty Hall problem was a logic and probability

puzzle that famously appeared in the “Ask Marilyn” column of PARADE magazine, run by Marilyn vos

Savant who briefly appeared in the Guinness Book of World Records for her record high IQ [3]. The question

posed was

“Suppose you’re on a game show, and you’re given the choice of three doors. Behind one door is

a car, behind the other, goats. You pick door, say #1, and the host, who knows what’s behind

the doors, opens another door, say #3, which has a goat. He says to you, ’Do you want to pick

door #2?’ Is it to your advantage to switch your choice of doors?”

Craig F. Whitaker

Columbia, MD

The name of the problem comes from the name of the host of the TV show ”Let’s Make a Deal”, Monty

Hall [2]. Despite the common intuition that there is no advantage to switching, vos Savant answered that

it is always advantageous to switch, much to the uproar of many individuals who wrote in to criticize her.

However, she was indeed correct [3]. Because one is initially more likely to select a door with a goat behind

it, given some assumptions, there is a 2
3 chance that one will win the car after choosing to switch doors. We

shall see this more rigorously below after applying the logic of knowledge and probability.

In this problem, Monty Hall acts not as an agent but rather is simply part of the game, what Fagin and

Halpern like to term ”nature” [1]. Thus, there is only one agent in consideration and so for convenience I will

drop the agent indicator subscript. There are three possible states for the doors to be in. Let Ci denote that

the car is behind the ith door. Thus, our states are {C1, C2, C3}. We need to consider the progression of the

game through three states and their models: M0, before the agent has selected a door, M1, after the agent

has selected a door but before Monty Hall opens one, and M2, where Monty Hall has opened a door.

Consider the first model M0. Based on the assumptions underlying the problem, the states are equally likely

and so w(C1) = w(C2) = w(C3) = 1
3 . After the agent picks a door but before Monty Hall opens a door,

our probability model does not change and so in M1 it is still the case that w(C1) = w(C2) = w(C3) = 1
3 .

Note that both M0 and M1 both satisfy the SDP condition as for both, the probability space is the same

regardless of which world the agent is in. Additionally, these models also naturally satisfy CONS as we don’t

wish to assign probabilities to false worlds.

Thus, without loss of generality due to uniformity regarding the agent’s pick of door, we need only consider

one of the three choices. Assume that door 1 was chosen. In the subsequent model M2, Monty Hall a opens

door, where Oi denotes the opening of the ith door. Thus, the possible worlds from the perspective of the

agent in M1 consist of combinations of cases of Ci and Oi. For the case C2, we have that w(C2) = 1
3 and

because door 1 was chosen, K(C2 ⇒ O3). So, w(C2 ∧O3) = 1
3 . By similar reasoning, w(C3 ∧O2) = 1

3 . For

the case C1, things are slightly different. K(C1 ⇒ (O2 ∨ O3)) and so w(C1 ∧ (O2 ∨ O3)) = 1
3 . Note that,

because we don’t know the the probability distribution behind the opening of the doors, C1 ∩ O2 is not a

measurable set. However, we can say that w(C1 ∧ O2) + w(C1 ∧ O3) = 1
3 . Thus, because of axiom W1,

0 ≤ w(C1 ∧ O2) ≤ 1
3 and 0 ≤ w(C1 ∧ O3) ≤ 1

3 . If a reasonable assumption is made that both cases are

equally likely, we have that w(C1 ∧O2) = w(C1 ∧O3) = 1
6 .
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Because door 1 was chosen, M2 can be based on either O2 or O3. The agent’s view on C1 being true

is the conditional probability of C1 given the set of possible worlds in M1, as specified by SDP. That is,

given an M2 where O2 is true, our probability measure says µC1(C1) = µ(C1 ∩ O2)/µ(O2). We know

that µ(O2) = µ((O2 ∩ C1) ∪ (O2 ∩ C3)) since C1 and C3 span the O2 sample space. Unfortunately, as

mentioned previously, C1 ∩ O2 is not a measurable set. However, for our purposes it suffices to know that

µ(C1 ∩ O2) ∈ [0, 13 ]. Thus, µC!
(C1) is constrained to the interval [0, 12 ] and so in model M2, after we have

picked door 1 and Monty Hall has opened door 2, w(C1) ∈ [0, 12 ].

In M2, if O2 is true then C2 is necessarily false and so we are only left to consider C3. Similar to the

above case, the probability measure here says µC3
(C3) = µ(C3 ∩O2)/µ(O2). Although we know that in the

numerator, µ(C3 ∩ O2) = 1
3 , we still face the issue where the denominator is non-measurable. Considering

the range of possible values like before, we conclude that w(C1) + w(C3) = 1 and w(C3) ∈ [ 12 , 1].

By the same logic, it is easy to show that if O3 occurs in M2, then w(C1) ∈ [0, 12 ] and w(C1) + w(C2) = 1.

Thus, w(C1) ≤ w(C2) and w(C1) ≤ w(C3) in the O3 and O2 cases respectively. Equality in one forces

inequality in the other and can only hold for one of infinitely many possible probability spaces for how

Monty Hall chooses the door to open. If we take the common assumption that Monty Hall has no preference

when it comes to choosing a door to open, then w(C1) = 1
3 < w(C2) = 2

3 and w(C1) = 1
3 < w(C3) = 2

3 in

the O3 and O2 cases respectively. Since the agent initially chose door 1, it is always to their advantage to

switch. Since the logic is symmetric for any initially selected door, it is always advantageous for the agent

to switch their choice of door. On a final side note, at M2, the CONS condition is still satisfied but SDP

is no longer as different starting worlds will lead to different probability spaces. As an easy example, if we

again select door 1, C2 ⇒ O3 ⇒ µC2
(C3) = 0 whereas C3 ⇒ O2 ⇒ µC3

(C2) = 0 in M2.

6 Conclusion

In discussing problems such as the Monty Hall problem, the logic of knowledge and probability developed

by Fagin and Halpern allows us to make probabilistic arguments and decisions which wouldn’t have been

possible in the classic epistemic logic language. Thus, it is a key stepping stone in being able to reason about

new problems and develop additional logics. In the analysis of the Monty Hall problem, various models were

considered as the game progressed in dynamic sense but the dynamics were never formalized. Fagin’s and

Halpern’s work allows for future research in developing formal dynamic and probabilistic epistemic logics.

Such a topic would be strongly connected to ideas of Bayesian inference. In Bayesian inference, we have

some unknown truth but also some ideas of what said truth could be, ie. possible worlds. By observing

events or data, we are able to formulate a prior distribution, the probability of a possible world given the

observations. This in turn gives us an idea as to what the most likely worlds are. The axiomatization of this

logic for probability and knowledge seems well suited to future research in areas such as statistics, decision

theory, and game theory.

References

[1] R. Fagin and J. Y. Halpern, Reasoning About Knowledge and Probability, Journal of the ACM, 41(2):340-

367, 1994.

6



[2] Selvin, Steve. A problem in probability (letter to the editor), American Statistician, 29(1):67, 1975.

[3] vos Savant, Marilyn. ”Ask Marilyn”, Parade Magazine: 16, 1990

7


