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Overview

A motivating problem
Random Forests as a solution
How decisions are learned
How we can improve learning
Why use Random Forests
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Question: Should this loan request be approved?

Possible Answer: Learn a Decision Tree

> 60

Approve Deny Approve Deny

Problem: High variance



Random Forests

An ensemble of individual decision trees, each learned from
a subset of the data, whose individual decisions are joined to
make one final decision.
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How are Decisions Learned?



Axis-Aligned Splits

e Ateach split node in a tree: Feare?2 .
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Axis-Aligned Splits

e Ateach split node in a tree: Feare?2

Select a single feature (i.e. age)
Select a threshold (i.e. 60)
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Axis-Aligned Alternative

e Oblique (angled) splits Feature 2 .
o Select a combination of L
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Axis-Aligned Alternative

e Oblique (angled) splits Feature 2
o Select a combination of
features
o Select a threshold
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Axis-Aligned Alternative

e Oblique (angled) splits Feature 2
o Select a combination of
features
o Select a threshold
e Benefits:

o Can identify more complex
relationships

e Problem:
o Can be computationally slow
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Sparse Oblique Splits

e A sparse combination of
features



Sparse Oblique Splits

e A sparse combination of 101 ° h
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o Increased signal to noise ratio
o Faster computation
o Improved accuracy in practice
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Data with Feature Structure

e |n some data, feature

indices matter

o I.e.Images, time series,
networks, etc.

e Problem: Random
forests don’t care

Random Forest Feature



Data with Feature Structure

e |n some data, feature

indices matter

o I.e.Images, time series,
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Data with Feature Structure

e |n some data, feature

indices matter

o I.e.Images, time series,
networks, etc.

e Problem: Random
forests don’t care

Structured Forest Features



Structured Splits

(A) Circle Segments (B) Orthogonal Bars (C) Noisy Impulse
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Why Random Forests?



Best average accuracy across hundreds of data sets
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Bagging (subsampling)

Training Data
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Bagging (subsampling)

e Variance reduction

e Robustness to outliers

e No need for a test data set
(out-of-bag error estimates)
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Highly Parallelizable

Trees are trained independently of one another

Train in parallel Full Classifier
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Yields a distance metric
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Yields a distance metric
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Yields a distance metric

e Applications

o Missing data imputation
o Qutlier detection
o Low-dimensional representation




Conclusion

e Random forests are a well-performing algorithm
e Many possible learning modifications exist
e They are flexible in their uses
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Forest Packing
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Comparison to other Algorithms
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Algorithm Runtimes
Circle Segments Orthogonal Bars  Noisy Impulse
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Single Feature Importance

Select a feature

Permute values in each sample at that feature
Evaluate forest

Evaluate difference in accuracy



Gini Importance

Change in information

- Probability of class k in a partition Pk = 157 2y,es Lyi = K] |
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