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Overview
● A motivating problem
● Random Forests as a solution
● How decisions are learned
● How we can improve learning
● Why use Random Forests



Question: Should this loan request be approved?



Possible Answer: Learn a Decision Tree
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Random Forests

An ensemble of individual decision trees, each learned from 
a subset of the data, whose individual decisions are joined to 
make one final decision.



Test Sample

Tree 2 Tree nTree 1

Class YClass X Class X



How are Decisions Learned?



Axis-Aligned Splits

● At each split node in a tree:
○ Select a single feature (i.e. age)
○ Select a threshold (i.e. 60)
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Axis-Aligned Alternative

● Oblique (angled) splits
○ Select a combination of 

features
○ Select a threshold
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Axis-Aligned Alternative

● Oblique (angled) splits
○ Select a combination of 

features
○ Select a threshold

● Benefits:
○ Can identify more complex 

relationships

● Problem:
○ Can be computationally slow
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Sparse Oblique Splits

● A sparse combination of 
features



Sparse Oblique Splits

● A sparse combination of 
features

● Benefits
○ Increased signal to noise ratio
○ Faster computation
○ Improved accuracy in practice

Random Forest 
Better

Random Forest 
Worse

Sparse Oblique Forest



Data with Feature Structure

● In some data, feature 
indices matter
○ i.e. Images, time series, 

networks, etc.

● Problem: Random 
forests don’t care
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● In some data, feature 
indices matter
○ i.e. Images, time series, 

networks, etc.

● Problem: Random 
forests don’t care

Structured Forest Features

Data with Feature Structure



Structured Splits



Why Random Forests?



Best average accuracy across hundreds of data sets

Source: Fernández-Delgado (2014)



Bagging (subsampling)

Training Data

Subsample 1
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Bagging (subsampling)
● Variance reduction
● Robustness to outliers
● No need for a test data set 

(out-of-bag error estimates)
Training Data

Subsample 1

Subsample 2

Subsample n
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Highly Parallelizable

Trees are trained independently of one another

Full Classifier

Training Data

Train in parallel



Yields a distance metric
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Yields a distance metric

Proximity(    ,    ) = 1



Yields a distance metric

● Applications
○ Missing data imputation
○ Outlier detection
○ Low-dimensional representation



Conclusion
● Random forests are a well-performing algorithm
● Many possible learning modifications exist
● They are flexible in their uses
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Extra Slides



Forest Packing



Comparison to other Algorithms





Single Feature Importance
● Select a feature
● Permute values in each sample at that feature
● Evaluate forest
● Evaluate difference in accuracy



Gini Importance
Change in information

- Probability of class k in a partition

- Information in the partition S

- Maximum purity of a split


