Random Forests Improving Feature Selection

Ronan Perry
Department of Biomedical Engineering
Johns Hopkins University

Overview

- A motivating problem
- Random Forests as a solution.
- How decisions are learned
- How we can improve learning
- Why use Random Forests

Question: Should this loan request be approved?

Question: Should this loan request be approved?

Possible Answer: Learn a Decision Tree

Question: Should this loan request be approved?

Possible Answer: Learn a Decision Tree

Problem: High variance

Random Forests

An **ensemble** of individual decision trees, each learned from a subset of the data, whose individual decisions are joined to make one final decision.

At each split node in a tree: Feature 2

- Select a single feature (i.e. age)
- Select a threshold (i.e. 60)

At each split node in a tree: Feature 2

Select a single feature (i.e. age)

Select a threshold (i.e. 60)

At each split node in a tree: Feature 2

Select a single feature (i.e. age)

Select a threshold (i.e. 60)

At each split node in a tree: Feature 2

Select a single feature (i.e. age)

Select a threshold (i.e. 60)

Axis-Aligned Alternative

- Oblique (angled) splits
 - Select a combination of features
 - Select a threshold

Axis-Aligned Alternative

- Oblique (angled) splits
 - Select a combination of features
 - Select a threshold

Axis-Aligned Alternative

- Oblique (angled) splits
 - Select a combination of features
 - Select a threshold
- Benefits:
 - Can identify more complex relationships
- Problem:
 - Can be computationally slow

Sparse Oblique Splits

A sparse combination of features

Sparse Oblique Splits

- A sparse combination of features
- Benefits
 - Increased signal to noise ratio
 - Faster computation
 - Improved accuracy in practice

Data with Feature Structure

- In some data, feature indices matter
 - i.e. Images, time series, networks, etc.
- Problem: Random forests don't care

Random Forest Feature

Data with Feature Structure

- In some data, feature indices matter
 - i.e. Images, time series, networks, etc.
- Problem: Random forests don't care

Sparse Forest Features

Data with Feature Structure

- In some data, feature indices matter
 - i.e. Images, time series, networks, etc.
- Problem: Random forests don't care

Structured Forest Features

Structured Splits

Best average accuracy across hundreds of data sets

Source: Fernández-Delgado (2014)

Bagging (subsampling)

Bagging (subsampling)

- Variance reduction
- Robustness to outliers
- No need for a test data set (out-of-bag error estimates)

Highly Parallelizable

Trees are trained independently of one another

Applications

- Missing data imputation
- Outlier detection
- Low-dimensional representation

Conclusion

- Random forests are a well-performing algorithm
- Many possible learning modifications exist
- They are flexible in their uses

Acknowledgements

References

- Random Forests (Leo Breiman, Adele Cutler)
- Sparse Projection Oblique Randomer Forests (Tomita 2019)
- Manifold Forests: Closing the Gap on Neural Networks (Perry 2019)
- Do we Need Hundreds of Classifiers to Solve Real World Classification Problems? (Fernández-Delgado 2014)

Extra Slides

Forest Packing

Comparison to other Algorithms

Single Feature Importance

- Select a feature
- Permute values in each sample at that feature
- Evaluate forest
- Evaluate difference in accuracy

Gini Importance

Change in information

- Probability of class k in a partition $\hat{p}_k = rac{1}{|S|} \sum_{y_i \in S} \mathbb{I}[y_i = k]$
- Information in the partition S
- Maximum purity of a split

$$I(S) = \sum_{k=1}^{K} \hat{p}_k (1 - \hat{p}_k)$$

$$\theta^* = \underset{\theta}{\operatorname{argmax}} |S|I(S) - |S_{\theta}^{L}|I(S_{\theta}^{L}) - |S_{\theta}^{R}|I(S_{\theta}^{R}).$$