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Motivation

Causal graphs are typically unidentifiable from i.i.d. data without
additional functional constraints.
Heterogeneous datasets contain natural distribution shifts which
provide additional information akin to interventions.
We seek to understand how we can identify the true causal graph and
under what distribution shifts this is possible.

Causal graphs and mechanisms

Consider a causal system over the random
variables X = {X1, ..., Xd}.
Xi is a stochastic function of its direct causes PAi

which are encoded as the parents of Xi in a
directed acyclic graph (DAG) G over X.
G induces the Markov factorization:

X1 X2

X3 X4

Figure 1. Example DAG
P(X) =

d∏
j=1

P(Xj | PAj)︸ ︷︷ ︸
Causal mechanism

Causal discovery goal: learn the causal DAG (from observational data).
Identifiability: from i.i.d. data, methods can only learn a Markov
Equivalence Class (MEC) of graphs.

Multi-environment data

We may have multiple datasets De on X from different environments
e ∈ {1, . . . , nE} with differing distributions Pe

X.
Assume an unobserved base CGM M = (G,PX).

Assumption [Shared mechanisms]: Each environment e independently re-
sults fromM by intervening on an (unknown) subset Ie ⊆ [d] of mechanisms.

Pe
X(X1, ..., Xd) =

(∏
j∈Ie

Pe
X(Xj|PAj)︸ ︷︷ ︸

Changed mechanism

) ∏
j∈[d]\Ie

PX(Xj|PAj)︸ ︷︷ ︸
Base mechanism

.

Definition [Augmented graph]: Let E be a binary random variable indexing
a pair of environments. Augment the causal graph G with vertex E and an
edge from E to any variable whose causal mechanism changes across those
two environments.

E

X1 X2

(a) Neither change

E

X1 X2

(b) P(X1) changes

E

X1 X2

(c) P(X2 | X1) changes

E

X1 X2

(d) Both change

Figure 2. Example augmented graphs

Contributions

We introduce the Mechanism Shift Score causal discovery algorithm.
We prove convergence rates and identifiability guarantees under
enough sparsely changing, heterogeneous environments.
We demonstrate empirical efficacy of the MSS, and flexibility to
accommodate existing parametric and nonparametric estimators.

Assumptions

Causal faithfulness: distributional independence implies graphical
independence.
Independent causal mechanisms [1]: a change in one causal mechanism
has no effect on and provides no information on changes to any other
causal mechanisms.
Pseudo causal sufficiency [2]: causal sufficiency holds, conditional on an
environment.
Sparse mechanism shifts (SMS) [3]: only a sparse number of mechanisms
change between any two environments.
Additional technical details of note
(i) Interventions are soft, i.e. an intervention does not change the graph skeleton.
(ii) The causal graph is the same across all environments.
(iii) No additional distributional assumptions are made.

Mechanism Shift Score (MSS)

Intuition: an incorrect graph in the MEC GMEC will have more mechanisms
shifts than the true causal graph due to wrong edge directions.
MSS counts the number of pairwise mechanism changes in graph G:

MSS(G) =
d∑

j=1

nE∑
e′>e

I
[
Pe(Xj|PAG

j ) ̸= Pe′(Xj|PAG
j )
]

Our estimand is the set Gmin
MEC := arg minG∈GMECMSS(G)

Main theoretical result

Theorem [Rate of identifiability]: Let G∗ be the true DAG
Pr[Gmin

MEC = {G∗}] ≥ 1 − |GMEC|(1 − β)⌊# environments/2⌋.

where β ∈ [0, 1) depends on the probabilities of mechanisms shifting.
Corollary [Asymptotic identifiability]: If the probability of each mechanism
shifting is bounded away from 0 and 1,

Pr[Gmin
MEC = {G∗}] → 1 as # environments → ∞

Significance: with enough sparsely changing environments, with high
probability we learn exactly the true graph, not just the MEC.

Experiments

Simulation: Random DAGs with non-linear additive noise distributions.

Figure 3. Under an oracle (perfect) test, MSS empirical results match the theory.
Pooling all data [2] does not yield identifiability.

Estimator(s): The MSS may use any empirical test of equality of conditional
distribution to count changes, parametric [4] or non-parametric [5].
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Figure 4. (A) The KCI [6] test performs best among considered MSS estimators. (B)
MSS using the KCI test outpeforms competing methods in recall, while maintaininig
good precision. (C) Promising MSS results on the Sachs protein network dataset [7].
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