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Statistical Parametric Maps (SPMs)

An experiment yields subject data matrices Yk ∈ Rn×tk , 1 ≤ k ≤ N
for some set of experimental conditions.

Assumption: the activity of each voxel is, under the null, distributed
according to a known density (usually t- or f-distributions)

Can compare control and experimental groups by performing
univariate voxel-wise tests for significance
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SPMs: General Linear Model

Figure: General linear model and random field theory for statistical inference.
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Motivation (applications paper link)

A key to experiment reproducibility is that the same spatial maps be
generated across replications

Studies often seek significant p-values for activity detection, but
usually ignore the need for reproducible spatial patterns

One problem is that they often parameterize the BOLD response
function, not consistent across individuals.
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https://www.sciencedirect.com/science/article/pii/S1053811912001644


Reproducibility of processing pipelines

Many ways to preprocess and analyze fMRI data

Attempts to improve reproducibility

Extensions to univariate approaches
Multivariate approaches

Authors’ assumptions: the subjects share an unknown spatial map but
show different temporal responses to a task.

Goal is to use a multivariate approach to learn a reproducible spatial
map shared by each subject

6 / 28



Multiview Learning

Given some data, we want to learn a representation

But if there are data from multiple views (ie. image and text), the
learning should account for similarities and differences between the
views.

Alignment: each view maps to the close-to-same representation

Figure: Alignment vs. Fusion methods
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Canonical Correlation Analysis (CCA)

Given data matrices X1 ∈ Rn×t1 ,X2 ∈ Rn×t2

Goal is to projections of X1,X2 whose correlations are maximized

Let z1 = X1a1 and z2 = X2a2

(a1, a2) = argmax

(
zT1 z2
‖z1‖‖z2‖

)
Equivalent to
(a1, a2) = argmax(aT1 C12a2)
s.t. aT1 C11a1 = aT2 C22a2 = 1

Comes down to solving an eigenvalue decomposition problem
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Extensions

Sparse CCA

Force sparsity of the projections a1, a2
Incorporate regularization terms

Kernel CCA

Incorporate nonlinearities

CCA for more than two data matrices
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Generalized Canonical Correlation Analysis (GCCA)

What there are more than two data matrices, i.e. Xk for 1 ≤ k ≤ N

We seek a generalization, equivalent to CCA in the two-sample case.

One way is to maximize the sum of pair-wise correlations (SUMCOR).

Optimization becomes
(a1, ..., ak) = argmax(aT (C − D)a)
s.t. 1

N

∑N
k=1 a

T
k Ckkak = 1

where Cij = Corr(Xi ,Xj) and Dii = Corr(Xi ,Xi )
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GCCA and fMRI

Authors’ idea: GCCA operates on inconsistent temporal responses to
tasks while still able to maximize the correlations of the latent spatial
maps

Let Xk be some n × tk fMRI data matrix

zk = Xkak ”individual spatial map”

z = 1
N

∑N
k=1 zk ”population spatial map”
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Evaluating reproducibility

NPAIRS (nonparametric prediction, activation, influence, and
reproducibility resampling)

A framework for evaluating the reproducibility and prediction
capabilities of preprocessing pipelines

Algorithm design
1 Partition the fMRI data into half
2 Use GCCA to separately extract population spatial maps for each half
3 Compare the two maps to calculate correlation and signal to noise ratio

(SNR)

24 / 28



Evaluating reproducibility

NPAIRS (nonparametric prediction, activation, influence, and
reproducibility resampling)

A framework for evaluating the reproducibility and prediction
capabilities of preprocessing pipelines

Algorithm design
1 Partition the fMRI data into half
2 Use GCCA to separately extract population spatial maps for each half
3 Compare the two maps to calculate correlation and signal to noise ratio

(SNR)

25 / 28



NPAIRs Algorithm

Figure: NPAIRs algorithm for reproducibility and inference

26 / 28



Results

Comparisons of GCCA to GLM and CVA (canonical variate analysis)

GCCA finds better spatial map

Seems to find the Default Mode Network (DMN)
Can’t reproduce the BOLD signal
Not necessarily useful if attempting to extract task-specific network

Suggest addition of penalty term to tune spatial/temporal
reproducibility

27 / 28



References (links)

Enhancing reproducibility of fMRI statistical maps using generalized
canonical correlation analysis in NPAIRS framework

Statistical Parametric Maps

Multiview learning survey

28 / 28

https://www.sciencedirect.com/science/article/pii/S1053811912001644
https://www.sciencedirect.com/science/article/pii/S1053811912001644
https://www.fil.ion.ucl.ac.uk/spm/doc/intro/
https://arxiv.org/pdf/1610.01206.pdf

