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Statistical Parametric Maps (SPMs)

@ An experiment yields subject data matrices Y;, € R™% 1< k <N
for some set of experimental conditions.

@ Assumption: the activity of each voxel is, under the null, distributed
according to a known density (usually t- or f-distributions)

@ Can compare control and experimental groups by performing
univariate voxel-wise tests for significance



SPMs: General Linear Model
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Figure: General linear model and random field theory for statistical inference.



Motivation (applications paper link)

@ A key to experiment reproducibility is that the same spatial maps be
generated across replications

@ Studies often seek significant p-values for activity detection, but
usually ignore the need for reproducible spatial patterns

@ One problem is that they often parameterize the BOLD response
function, not consistent across individuals.


https://www.sciencedirect.com/science/article/pii/S1053811912001644

Reproducibility of processing pipelines

Many ways to preprocess and analyze fMRI data

Attempts to improve reproducibility

o Extensions to univariate approaches
e Multivariate approaches

Authors’ assumptions: the subjects share an unknown spatial map but
show different temporal responses to a task.

Goal is to use a multivariate approach to learn a reproducible spatial
map shared by each subject
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Multiview Learning

@ Given some data, we want to learn a representation

@ But if there are data from multiple views (ie. image and text), the
learning should account for similarities and differences between the
views.

@ Alignment: each view maps to the close-to-same representation
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Figure: Alignment vs. Fusion methods
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Canonical Correlation Analysis (CCA)

@ Given data matrices X; € Rt X, € R"™®
@ Goal is to projections of X1, Xo whose correlations are maximized
o Let z1 = X131 and 2 = Xoa)
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Canonical Correlation Analysis (CCA)

Given data matrices X; € R™% X, € R

Goal is to projections of X1, Xo whose correlations are maximized

Let z1 = Xja1 and zo = Xoas
zl 2
[ENIE

(a1, a2) = argmax

@ Equivalent to
(a1,a2) = argmax(alTClzag)
s.t. alTCllal = a2TC22a2 =1

Comes down to solving an eigenvalue decomposition problem
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Extensions

@ Sparse CCA

e Force sparsity of the projections a1, a»
e Incorporate regularization terms
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Extensions

@ Sparse CCA

e Force sparsity of the projections a1, a»
e Incorporate regularization terms

o Kernel CCA

e Incorporate nonlinearities

@ CCA for more than two data matrices
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Generalized Canonical Correlation Analysis (GCCA)

@ What there are more than two data matrices, i.e. X for1 < k<N
@ We seek a generalization, equivalent to CCA in the two-sample case.
@ One way is to maximize the sum of pair-wise correlations (SUMCOR).

@ Optimization becomes
(a1, ..., ax) = argmax(a’ (C — D)a)
s.t. % 22121 akTCkkak =1
where Cjj = Corr(Xi, X;) and Dj; = Corr(Xj, X;)
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GCCA and fMRI

@ Authors’ idea: GCCA operates on inconsistent temporal responses to
tasks while still able to maximize the correlations of the latent spatial
maps
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GCCA and fMRI

@ Authors’ idea: GCCA operates on inconsistent temporal responses to
tasks while still able to maximize the correlations of the latent spatial
maps

o Let Xy be some n x t, fMRI data matrix

@ zx = Xiay "individual spatial map”

o z= %" z "population spatial map"
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Evaluating reproducibility

e NPAIRS (nonparametric prediction, activation, influence, and
reproducibility resampling)

@ A framework for evaluating the reproducibility and prediction
capabilities of preprocessing pipelines

24 /28



Evaluating reproducibility

e NPAIRS (nonparametric prediction, activation, influence, and
reproducibility resampling)

@ A framework for evaluating the reproducibility and prediction
capabilities of preprocessing pipelines

@ Algorithm design

© Partition the fMRI data into half

@ Use GCCA to separately extract population spatial maps for each half

© Compare the two maps to calculate correlation and signal to noise ratio
(SNR)
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NPAIRs Algorithm
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Figure: NPAIRs algorithm for reproducibility and inference
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e Comparisons of GCCA to GLM and CVA (canonical variate analysis)
@ GCCA finds better spatial map

o Seems to find the Default Mode Network (DMN)
e Can't reproduce the BOLD signal
o Not necessarily useful if attempting to extract task-specific network

@ Suggest addition of penalty term to tune spatial /temporal
reproducibility
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