
Section 9, 10/28/19  

Bayesian Inference (pages 290-293)  

In a Bayesian framework, the data comes from distribution  parameterized by an unknown
parameter . The unknown parameter  is treated as a random variable distributed according to some prior
distribution . We write the joint distribution as the product of the likelihood and the prior, that is 

. Given observed data, we can think of the likelihood of our parameter, what is
called the posterior distribution .

Ex. Normal Likelihood  

Consider the case of a likelihood distribution which is normal with mean . In this case, for convenience, we
will write the variance  instead as the precision . That is our density is

yet we do not know our mean and precision.

Consider the independent priors

Recalling that the likelihood of  observations can be factored, we can then write the posterior distribution as

We can disregard all constants as the rlation is a proportion, not equality. In order to first determine an
appropriate estimate for , we need to do away with  which can be accomplished by "marginalizing" it out
through integration. That is,

Examining the posterior, as a function of  is appears to be distributed like a gamma density with parameters 
 and . Thus

This can be solved computationally. Or, if  is large or  are small, simplifications show

This is maximized when .

Hypotesis Testing (page 337)  
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We have examined confidence intervals before, and here we will show that inverting a confidence set yields a
hypothesis test and vice versa. Consider the following motivating example.

Example A  

Consider the random samples  i.i.d. from a  normal distribution. We wish to make the
following hypothesis test:

We wish to make a claim with certainty level , that is we wish to be correct  of the time under this
model. So, the null hypothesis can be rejected if  where  is such that 
when the null hypothesis is true, i.e. .

This is equivalent to saying that we have a % confidence interval for :

The confidence interval consists of all of the values of  for which the null hypothesis is accepted.

The p-value (pages 334-335)  

The p-value is an important concept in the notion of statistical significance testing, in accepting or rejecting a
null hypothesis.

The concept of a null hypothesis goes back to the famous statistician Fisher and the "lady tasting tea"
experiment. The story goes as follows: The lady in question informed Fisher that she could tell the difference
in taste between tea that had had milk added to the cup before or after the tea was poured. Fisher devised an
experiment to test this by giving her eight cups of tea, four cups from each category. In this case, it makes
sense to assume that a default, the "null distribution", of chance guessing. Fisher was willing to accept the
alternative idea that she could tell the difference only if she correctly identified all 8 cups. That is, if she could,
this result was unlikely enough to reject the idea the idea that she was just guessing. Here, the null
distribution of cups is known and the alternative distribution is unknown and arbitrary.

The idea is that we assume a null distribution to be true. If the likelihood of the data under this assumed truth
is small, then this gives us reason to doubt and reject our assumption of the truth. The notion of "small"
requires the selection of a significance level  prior to analysis of the data. This choice is arbitrary, usually 
or  by convention.

Once we have a defined, or approximated as often is the case, the null distribution, given the the data we can
calculate the probability of a result being more extreme than what was observed if the null distribution is true.
This is the definition of a p-value. If the p-value is lower than the significance level , then our observation is
extreme enough to warrant rejecting the null. Note, the p-value is not the probability that the null hypothesis
is true, a common misconception.

Bayesian Testing  

Suppose we have observed data and hypothesize two potential distributions from which the data could have
come. Often the distribution is the same and we hypothesize two potential sets of parameters  and . In
this case, our posterior probabilities are
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By Bayes law

Thus, we can express the ratio of the posterior probabilities as

the product of the priors and likelihoods. Once we define our priors, this ratio is a defined number. In order to
choose a hypothesis, it makes sense to choose  if the ratio is greater than , i.e. the likelihood of  is
greater than that of .

Since the ratio of the priors is some constant, this is equivalent to

for some threshold value  based on our prior beliefs. That is . It turns out that the
choice of  balances the tradeoff between Type 1 and Type 2 errors.

Type 1 Error: P(reject )

Type 2 Error: P(accept )
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