Section 8, 10/21/19

Theorem A (page 275):

Under appropriate smoothness conditions on the density f, the mle from an i.i.d. sample is consistent.

Proof

Recall that for an i.i.d. sample, the log likelihood of n observations is
n

1(6) = ) logf(X;]6)
i=1

Given a set of data, we wish to find the parameter set 8 that maximizes our average likelihood
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As n goes to infinity, by the law of large numbers

%1(9) ~ E[logf(X|6)]
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since the distribution of observations approaches the true distribution. In order to maximize this asymptotic
distribution, we take the derivative and set it to zero.
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If we set 8 = 6, then
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on the basis of appropriate smoothness. So 6 is a stationary point, hopefully a maximum. A more involved
argument rigorously shows that for such large n, the 6 that maximizes the log likelihood also maximizes the
expected log likelihood.
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Theorem B

Under smoothness conditions on f, the probability distribution of w/nI(Oo)(é — 6y) approaches a standard
normal distribution.

Proof (sketch)
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We begin by constructing a first order Taylor expansion approximation of the log likelihood derivative at 0
(maximized).
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As n goes to infinity, by the law of large numbers

ll"(eo) -1 En: Ll log f(z:|6o)
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This latter equivalence following from Lemma A, from last week. Thus by rearranging terms to the other side
we have

0~ I'(8y) + (8 — 60)I(6)
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We wish to examine the mean and variance of the distribution of our centered estimate (é — 6)). Note that
the denominator is simple a constant. Thus
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By last week's results. Taking variance,
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Since I’ (0) is the sum of i.i.d. random variables, we central limit theorem may be applied. Thus
nI(60)(6 — 6y) ~ N(0,1) and for large data, we know the estimate of 6 approaches the truth and we know
our confidence in its estimate.
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