Section 7, 10/14/19

Fisher Information

Given some density f(X|6), recall that we define the score function of the likelihood as

0
—1 X|60
5909 f(X16)
And the Fisher Information as the second moment of the score function
0
I1(0) = E[(aalogf(XW)) }
Lemma A (page 276)
Given appropriate smoothness conditions of the density, we can rewrite
2
1(6) = —E|—=log f(X|6)]

The proof for this is as follows. Consider the first moment of the score function
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We use two properties. The first is that under appropriate smoothness conditions, the integral and the
derivative are interchangeable. The second property is the identity:
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Thus,
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So, we can take the partial derivative of each side
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The latter expression is the second moment of the score function, the Fisher Information! Rearranging,
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~ B[ 1log £(X[6)] = 1(6)
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