
Section 6, 10/8/19  

Parameter Estimations: Maximum Likelihood Estimation  

Suppose that a set of random variable  are distributed according to a joint density function 
dependent on some set of parameter . Then for a given set of observations , we write the density
at these observations as . The likelihood of the observations given some  is exactly 

. The maximum likelihood estimate (mle) of  is the value for which  is
maximized. Intuitively this is the value for which the data observed is most likely to have been observed.

MLEs of Multinomial Cell Probabilities  

What follows is an example of the application of the MLE to data from a given distribution. Consider the
multinomial distribution, a generalization of the binomial distribution where, given a set of probabilities 

 that sum to les 1, the probability  determines the probability of an observation being in "cell" .
The random variables  are the number of counts in cells  for a total count of . Given a
set of observed counts , we wish to estimate the unknown probabilities. The distribution is defined
as follows:

We seek the  that maximize this quantity. It is usually easier to maximize the log likelihood instead.

This is subject to . So we use Lagrange Multipliers. Recall that if we wish to optimize some function 
 subject to the constrain , then we can equivalently optimize the Lagrangian function 

. Thus, we can maximize

We do so by taking partial derivatives with respect to the  and setting the result to . This yields, by
symmetry, . Since the the sum of these estimates must be 1,  and so 
. Therefore . This is the sample proportion in each class, an intuitive answer.

Example A: Hardy-Weinberg Equilibrium  

See textbook page 274

Fisher Information  

The results will be proven in class, but here we simply define terms and attempt to build an intuition.
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Given some function with density  parameterized by some true  which we estimate with our mle .
It can be shown that under reasonable conditions of smoothness,  converges to  as our sample size  goes
to infinity.

Define the score function of the likelihood as

And the Fisher Information as

Back to what we said above, specifically  converges to  in that the distribution of  asymptotically
converges to a normal distribution with mean  and variance . We say that  is asymptotically
unbiased.

By Theorem B on page 227, under smoothness condition on , the distribution of 
approaches the standard normal distribution . A large Fisher Information quantity implies a strong
confidence of our estimated parameter . One of the most important regularization conditions is that the
support of the distribution is independent of the parameter choice . The support is the set of values  where 

. For instance, the uniform distribution  does not satisfy this condition.


	Section 6, 10/8/19
	Parameter Estimations: Maximum Likelihood Estimation
	MLEs of Multinomial Cell Probabilities
	Example A: Hardy-Weinberg Equilibrium
	Fisher Information



