Section 3, 9/16/19

Normal Approximations

Given a set of measurements X1,..., X,, we know E(X,) = p and Var(X,,) = 0% /n. So for largen < N,
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as n — oo where @ is the cdf of the standard normal. The limit only makes sense in the case of sampling with

replacement, but as long as n is large but small relative to N, X is still approximately normally distributed.

the central limit theorem holds that

Recall that o ¢ converges to o for n large but small relative to IV. This lets us derives probabilistic bounds on
the estimate of the mean and generate confidence intervals.

Ex. C

From the prior example C, we found for a sample of size 50 an estimated discharge proportion of p = 0.52.
Let the population proportion be 0.65 for a difference of 0.13. We wish to understand the probability of this
difference occurring. We start by estimating the variance of our estimate as
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Then we can calculate the likelihood of this error, which is unfortunately "unlucky".

P(lp—p[>0.13)=1—P(jp—p| < 0.13)
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= 2[1 — $(2.03)] = 0.4

Confidence Interval

The confidence interval of a population parameter 6 is a random interval which contains 8 with some
probability 1 — a. This tells us the uncertainty of the estimate 0.

Let z(«) be a the z-score function whose value is such that for Z ~ N(0,1),

P(Z<zla)=P(—2(a)<2)=1-«
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FIGURE 7.3 A standard normal density showing o and z(«).
So by the central limit theorem,
X —p

P( — 2(a/2) < -

<za/2))=1-a

Any thus it follows that the o—confidence interval for the population parameter p is

P(X —o032(a/2) <p< X +o52(a/2) ~1-a
Since o ¢ is generally unknown, for large samples one can use the estimate s 5.
Ratio Estimates

Suppose that for each member ¢ of a population, two values x; and y; are measured. Thus these samples are
matched, i.e. indexed by the same 7 as they correspond to the same individual. It may be that y is the acres of
wheat planted and z is the total number of acres and we are interested in the percent of land used to plant
wheat. Specifically, we are interested in the population ratio
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It is important to note that this is not
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Our estimate of r is R = Y /X but this is nonlinear and thus we cannot simply take its expected value and
variance. So we use approximation techniques.

Approximation Methods
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Step back and suppose we have some random variable X whose first and second moments are known.
Suppose Y = g(X), another random variable. If g(X) is a linear function, then we would be able to calculate
the first moments of Y. But if g(X) is nonlinear, we need to find a linear approximation of g(X) in the regions
where X has high probability. We linearize using a Taylor Series expansion of g about px.

Using a first order expansion,

Y = g(X) = g(ux) + (X — px)g (kx)
By linearity of expectation,
py =~ g(px)
oy ~ oklg (ux))*

It doesn't make sense for E[Y] = g(E[X]) in general, a result of our approximation being too naive. Using a
second order expansion instead,

Y = g(X) = glpx) + (X~ i) (x) + 5 (X ux)?g" ()

And calculating the expectation get

1
py ~ g(px) + 50%(9”(ux)

The variance is not as trivial to compute.

For an nth order Taylor expansion centered about px and evaluated at some z, there exists some
z* € [z, px| such that the error of the approximation is bounded by
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