
Section 10, 11/5/19  

Bayesian Testing  

Suppose we have observed data and hypothesize two potential distributions from which the data could have
come. Often the distribution is the same and we hypothesize two potential sets of parameters  and . In
this case, our posterior probabilities are

By Bayes law

Thus, we can express the ratio of the posterior probabilities as

the product of the priors and likelihoods. Once we define our priors, this ratio is a defined number. In order to
choose a hypothesis, it makes sense to choose  if the ratio is greater than , i.e. the likelihood of  is
greater than that of .

Since the ratio of the priors is some constant, this is equivalent to

for some threshold value  based on our prior beliefs. That is . It turns out that the
choice of  balances the tradeoff between Type 1 and Type 2 errors.

Type 1 Error: P(reject )

Type 2 Error: P(accept )

Neyman Pearson  

This theory of hypothesis testing frames it as a decision problem based on the two types of errors. There is no
need to specify prior distributions, this is not a Bayesian setting. There are two hypotheses, the null  and
the alternative . Each of these are simple hypotheses in that we completely specify a probability
distribution for each. In this way, we can construct a likelihood ratio.

Type I Error: Rejecting  when it is true
Type II Error: Accepting  when it is false
Power: Probability that  is rejected when it is false (1 - Type II Error)

Their decision rule rejects  whenever the likelihood ratio is less than some constant  and significance level 
.
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The Neyman-Pearson Lemma tells us that the likelihood ratio test (LRT) at level  is most-powerful level-  test
of  vs. . There are many possible decision rules one can choose, but this is telling us that among all
possible ones for which the Type I Error probability is less than or equal to , the likelihood ratio test is
the one with the greatest power. This is simply a binary decision rule not related to the truth. Thus it is not
rejecting when  is false nor accepting when it is true.

The level-  test relies on a critical inequality. So let  be the likelihood ratio test. We reject the null if the
likelihood under the null is less than some constant times the likelihood under the alternative. Says the data is
sufficiently less likely.

Proof  

Our decision rule is  if . We set our Type I Error,  and consider any
other binary decision rule  where .

We want to now show that , that is that the power of the LRT is always greater. We
will rely on showing the following inequality.

We use that fact that both rules are binary.

Case 1:  

If this is the case, then . Since this holds.

Case 2:  

Here,  and so RHS = 0. Since  LHS is less than or equal to 0.

Note that in terms of expectations,

.

.

So we now take expectations in the inequality, which correspond to probabilities since the decision rules are
binary.

Rearranging,

The left side is the difference in the probability Type one error, which we have said is greater than or equal to
0. Thus, the LRT always has a equivalent or greater power since the RHS is nonnegative.

NOT BAYESIAN SETTING. Either the null is true or it isn't, no probabilities.

Example A (page 333)  
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Uniformly Most Powerful (UMP)  

af://n54


After example A, we determine a region for the test based on the distribution under the null. But the actual
value of the point of rejection is independent of  as long as .

Rejection region can be determined just by alpha and standard normal critical values, NOT , the exact
alternative doesn't not matter. The Neyman-Pearson Lemma required both hypotheses to be simple, but here
our alternative can be composite in that it need not fully specify the distribution. Because this test is the most
powerful and is the same for every alternative of the form

it is uniformly most powerful for this hypothesis test. This is called a one-sided alternative. Note that a two
sided alternative wouldn't work.
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