Section 1, 9/2/19

Multivariate Change of Basis

Let (X,Y) ~ Fxy and X, Y are mapped onto U, V by some invertible transformation such that

u=g1(z,y) v=gz,y)
z = h1(u,v) y = ha(u,v)

Then (assuming that g1, g2 have continuous partial derivatives) and that the Jacobian

g

dx dy o d ags d
J(x,y) = det | ar (ﬁ) (ﬁ) _( g-) (ﬁ) #0
dg, dgr dx dy ax ay
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PROPOSITION A

Under the assumptions just stated, the joint density of U and V is

fov(u, v) = fxy(hi(u, v), hy(u, v)|J 7 (hy(u, v), ha(u, v))|

for (u,v) such that u = gy(x,v) and v = g»(x,y) for some (x, y) and O
elsewhere. [

In proposition A, the inverse Jacobian term compensates for how areas/volumes/higher dimensional regions
change under the transformation.

Ex.
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Suppose that X and X, are independent standard normal random variables and that
Y1 =X,
hL=X+X

We will show that the joint distribution of ¥, and ¥> is bivariate normal. The Jacobian
of the transformation is simply

J’[x,}']:det“ {1]] =1

Since the inverse transformation is x; = y; and x, = y, — v, from Proposition A the
joint density of ¥, and Y5 is

1 1, )
friv, (Y1, y2) = 77 CXP —5[}'1 + (y2 — 31 ]]
= - exp —5(2}‘[ + ¥ — 2}'1}'2)]

fv,,v, can be seen as a bivariate normal distribution
Bivariate Normal Distribution

Normal distribution

fx(z) = —eap(~ 1)

o/ 21

Bivariate normal

cov(X,Y)
0,0y

For means u., iy, variances o, o, and population correlation coefficient p =
As a reminder, cov(X,Y) = E[(X — E[X])(Y — E[Y])] = E[XY] — E[X|E[Y]

1 ox (_ 1 [(»‘f — py)? N (y — py)?
2moyoyy/ 1 — p2 2(1 = p?) ¥

Ox oy
_2p(x — px)(y — jiy)
OxOy

fx,y) =

Another way to write the bivariate normal is in quadratic form
Let
T
x = [z,9]

= [ty iy )"
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Instead of o, you may see po, o, sometimes as they are equivalent. Then

fxy(z,y) = %kexp[—%(x — )T S (x — p)] This form generalizes to multivariate gaussians of higher
(2m)" |3

dimension.
Sometimes we are interested in the conditional density, however.

Recall the conditional density fy|X(y|m) = —f);yg’)y)
X

Applying this to the bivariate normal distribution and reducing, we get:
2

oy -
R p—(x — y)
Ox

1
frix(¥|x) = Urmexp ) o7 (1 — p?)

Notice that this is exactly a univariate normal distribution whose mean and variance are dependent on p and
1. This is easy to visualize on the plot of a multivariate normal. In the case that p = 0, i.e. they are
independent, we recover fy as we would expect.
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